If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+28x+41=0
a = 4; b = 28; c = +41;
Δ = b2-4ac
Δ = 282-4·4·41
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{2}}{2*4}=\frac{-28-8\sqrt{2}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{2}}{2*4}=\frac{-28+8\sqrt{2}}{8} $
| -8+6w=8w | | -5b+19=-5-17b | | 1+5k=-3k+9 | | y/0.162=0.55 | | 7m−4m=36 | | 2(x+8)-4x=20 | | 1/5d-4+3/5d-3=5 | | 1+2a=1+4a | | 4x-17=-2x+35 | | -4+-6k+8k=-4-7k | | 3k=2k-10 | | 10-8a=-166 | | 3k-2k=10 | | x/24=0.81 | | 39-8(-3)=-8(3+4x-3)+3(-3) | | ×-9y=3 | | 1.25(x-1=0.5(3x-1)-1 | | x/24=81 | | 7(x+3)-x=6x+21 | | F(n)=6n+3 | | 8(b-1+4=3(2b-8)-16 | | 8.2+3.8h-5.6h=-7.2 | | 3x-5(x-3)=-7+4x+10 | | 4(v-2)=7v+7 | | 5g=7g+8 | | 24x-34=24x | | 1w-15=5-1w | | 26x-2=25x | | 42=−7(z-3) | | 1/3x-9=7(2x-10-13x | | 42=-7(z−3) | | 39+9x+8+-11=180 |